protect { crypto data }

Sébastien Martini — seb@dbzteam.org

December 18, 2014

Disclaimer

m Young Rustacean
m Only partial solution, still open issues

m *experimental*, *experimental*, *experimental*,
experimental, *experimental*, *experimental*

m Experimenting with ideas

m Protect secrets and crypto data stored in memory

m Use a memory safe language like Rust

m Still room for unsafe code (external C code, unsafe)

m Protect memory allocations
m Implement data containers

Custom allocator

m General purpose allocators mainly focus on performances
m Need a more specialized allocator

m Only used for a subset of all allocations
m Designed for common crypto use cases

m Main types of data used in crypto

m Secret keys, plaintext messages
m Crypto data structures, states

TARS allocator

m Largely inspired by OpenBSD’s malloc

m At a high-level provides a replacement for malloc and
free

m Based on mmap, all operations are applied on memory

pages

http://anoncvs.estpak.ee/cgi-bin/cgit/openbsd-src/tree/lib/libc/stdlib/malloc.c

TARS allocator

m Allocate small chunks on a same page

m e.g. size of buffers from toy implementations

m ChaCha: 64 bytes

m Poly1305: 68 bytes

m Sha3: 200 bytes

m Curve41417: 208 bytes

m Fine-grained access control

m Modify memory protections on buffers
m None, Read, Write

m Destroy-on-free

TARS allocator

one page

Guard Page chunk | chunk Guard Page
n pages
Guard Page single object Guard Page

Figure 1: Allocator

ProtBuf

Protected Buffer

Fixed-length array

Read/write access to its memory

Take an Allocator as type parameter (pluggable
allocator)

Default allocator

m Adapted for handling internal crypto buffers
m Small allocated chunks may share a same page
m Empty page chunks may be cached

Example

let mut buf: ProtBuf<u8, ProtectedBufferAllocator> =
ProtBuf: :new_zero(42);

assert! (buf[21] == 0);

// Slices are very useful for accessing raw memory
my_function(buf.as_mut_slice());

ProtKey

Protected Key

Basically a ProtBuf with restricted memory accesses
Instantiated by taking ownership of a ProtBuf

Use a different allocator

No caching, page never shared between chunks
Require explicit requests to access memory

m Deny all accesses by default
= RAII

Example

let buf: ProtBuf::<u8, ProtectedKeyAllocator> =
ProtBuf: :new_rand os(32);

let key = ProtKey: :new(buf);

key.read with(|lk| encrypt(k.as_slice(), b"abc"));

Open issues

m Hard to control LLVM code generation, optimizations
m memset calls may be optimized-out from generated code
m Currently use intrinsics::volatile_set_memory

m Data may be copied to temporary variables on the stack

B buf3[0] = bufi1[0] + buf2[0]
m Should we use inline assembly? genericity? portability?

m May produce different results on different archs
m Implementations may evolve

m High-level language constructions abstract details

m Hard to anticipate when/how data is copied

Others limitations

New code, lot of unsafe

Limited testing, only on x86, x86_ 64

Not compatible with Windows (not planned)
Currently not expected to interface well from C

m panic! on error

Slow compared to general purpose allocators

m Calls to mmap, memset, mprotect are expensive

Ready to roll

m Project TARS available on Github
m https://github.com/seb-m/tars

m Feedbacks are welcome

https://github.com/seb-m/tars

Ready to roll

Figure 2: TARS

