
protect { crypto data }

Sébastien Martini – seb@dbzteam.org

December 18, 2014

Disclaimer

Young Rustacean
Only partial solution, still open issues

experimental, *experimental*, *experimental*,
experimental, *experimental*, *experimental*

Experimenting with ideas

Goal

Protect secrets and crypto data stored in memory
Use a memory safe language like Rust

Still room for unsafe code (external C code, unsafe)

Protect memory allocations
Implement data containers

Custom allocator

General purpose allocators mainly focus on performances
Need a more specialized allocator

Only used for a subset of all allocations
Designed for common crypto use cases

Main types of data used in crypto
Secret keys, plaintext messages
Crypto data structures, states

TARS allocator

Largely inspired by OpenBSD’s malloc
At a high-level provides a replacement for malloc and
free
Based on mmap, all operations are applied on memory
pages

http://anoncvs.estpak.ee/cgi-bin/cgit/openbsd-src/tree/lib/libc/stdlib/malloc.c

TARS allocator

Allocate small chunks on a same page
e.g. size of buffers from toy implementations

ChaCha: 64 bytes
Poly1305: 68 bytes
Sha3: 200 bytes
Curve41417: 208 bytes

Fine-grained access control
Modify memory protections on buffers
None, Read, Write

Destroy-on-free

TARS allocator

Figure 1: Allocator

ProtBuf

Protected Buffer
Fixed-length array
Read/write access to its memory
Take an Allocator as type parameter (pluggable
allocator)
Default allocator

Adapted for handling internal crypto buffers
Small allocated chunks may share a same page
Empty page chunks may be cached

Example

let mut buf: ProtBuf<u8, ProtectedBufferAllocator> =
ProtBuf::new_zero(42);

assert!(buf[21] == 0);

// Slices are very useful for accessing raw memory
my_function(buf.as_mut_slice());

ProtKey

Protected Key
Basically a ProtBuf with restricted memory accesses
Instantiated by taking ownership of a ProtBuf
Use a different allocator
No caching, page never shared between chunks
Require explicit requests to access memory

Deny all accesses by default
RAII

Example

let buf: ProtBuf::<u8, ProtectedKeyAllocator> =
ProtBuf::new_rand_os(32);

let key = ProtKey::new(buf);

key.read_with(|k| encrypt(k.as_slice(), b"abc"));

Open issues

Hard to control LLVM code generation, optimizations
memset calls may be optimized-out from generated code

Currently use intrinsics::volatile_set_memory

Data may be copied to temporary variables on the stack
buf3[0] = buf1[0] + buf2[0]
Should we use inline assembly? genericity? portability?

May produce different results on different archs
Implementations may evolve

High-level language constructions abstract details
Hard to anticipate when/how data is copied

Others limitations

New code, lot of unsafe
Limited testing, only on x86, x86_64
Not compatible with Windows (not planned)
Currently not expected to interface well from C

panic! on error

Slow compared to general purpose allocators
Calls to mmap, memset, mprotect are expensive

Ready to roll

Project TARS available on Github
https://github.com/seb-m/tars

Feedbacks are welcome

https://github.com/seb-m/tars

Ready to roll

Figure 2: TARS

